T Tenmat

VFB 120/120

VFB 120/120 Ventilated Fire Barrier

Tenmat's VFB 120/120 Ventilated Fire Barriers are "open state" cavity fire barriers designed to offer fire resistance performance within external wall cavities that require permanent (open-state) ventilation in non-fire conditions.

Product Description

Product Details

Tenmat's VFB 120/120 Ventilated Fire Barriers are 'open state' cavity fire barriers for ventilated cavities of up to 450mm. Each VFB 120/120 consists of a specially formulated fire rated stone mineral wool section with an integral high expansion intumescent seal fixed to the leading edge.

The VFB 120/120 then leaves a maximum 25mm air gap to allow for drainage and maintain ventilation in normal use. In a fire situation the intumescent seal rapidly expands to seal off the air gap and prevent vertical fire spread within the external wall.

The products have undergone extensive fire testing following the principles of BS EN1363-1 and in accordance with ASFP TGD19 (Fire Resistance Test for 'Open-State' Cavity Barriers).

The VFB 120/120s are mechanically fixed horizontally within ventilated cavities behind the external wall substrate following the fire compartment line. The VFB 120/120s are used horizontally and can be installed in conjunction with Tenmat NVFB Non-Ventilated Fire Barriers which provide vertical fire separation along fire compartment party wall lines.

- 3rd Party Certification - IFC Certification
- Fire Ratings of 120 Minutes Integrity and Insulation for up to 300 mm cavities
- Fire Ratings of 90 Minutes Integrity and Insulation for 300 mm to 450 mm cavities
- Maintains a 25 mm air gap
- Up to 450 mm cavities tested
- Standard thickness of 75 mm
- Durability and Age Tested
- Fixing brackets included as standard

Tenmat

Fire Test Evidence

Fire Test performance to BS EN 1363-1 and to the principles of ASFP TGD19

Inner Leaf Substrate Type (facing cavity) with Appropriate minutes Fire Rating	Outer leaf Substrate Type (facing cavity) With Appropriate Fire Resistance	Orientation	Insulation Type Within Cavity (interrupted)	Maximum Cavity Width (in mm)	Maximum Open State Air Gap (In mm)	Product Dimensions (thickness x height x length in mm)	Product Fire Resistance Rating	
							Integrity	Insulation
Autoclaved Aerated Concrete	Autoclaved Aerated Concrete	Horizontal	None	40 mm	25 mm	$15 \times 75 \times 1,000$	180	180
12.5 mm Weather Defence Board on SFS	Autoclaved Aerated Concrete	Horizontal	25 mm Phenolic	60 mm	25 mm	$35 \times 75 \times 1,000$	120	120
12.5 mm Weather Defence Board (Siniat)	Autoclaved Aerated Concrete	Horizontal	100 mm PIR	300 mm	25 mm	$275 \times 75 \times 1,000$	120	120
Autoclaved Aerated Concrete	Autoclaved Aerated Concrete	Horizontal	100 mm PIR	450 mm	25 mm	$425 \times 75 \times 1,000$	90	90

3rd Party Certification:
IFC Certification - Certificate No. IFCC 1751
Fire Test Evidence:
Field of Application Report - PAR22672/02

The types of insulation tested do not infer generic approval for these insulation products and approval should be sought from the insulation manufacturers depending upon the particular type of construction being built. Insulation is tested interrupted to prevent the possibility of fire bypassing behind the cavity barrier.

The ASFP-TGD19 test standard allows for insulation to be replaced with insulation that is listed as better using the hierachy as below and must be installed interrupted. Notes on insulation from TGD19:2017-13.3 Insulation. For interrupted insulation the following hierachy is used: Best- stone wool, glass wool, phenolic, PIR, PUR, EPS - Worst

Technical Information

Colour	Black
Finish	Polythene Wrap
Cuttability	Can be cut to length
Storage	Dry, ambient
Transportation Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Durability	Type X intended for use in conditions exposed to weather (UV, rain, frost)
Fungal Resistance	Protected by polythene
Smoke/Halogen Content	Low Smoke / Zero Halogen
Minimum Total Working Life (Years)	Based on typical climatic conditions
	UK
	Australia
	France
	New Zealand $\quad 60$ years
	Germany
	Hong Kong
	The Netherlands $\quad 60$ years
	60 years
	60 years years
	60 years

Working life, durability, halogen content and smoke emission data refers to the active intumescent component.

General Design \& Installation Considerations

Maximum free air gap for this cavity barrier is 25 mm , the space in front of the intumescing strip on the face of the cavity barrier to the rear of the external wall surface.

Open state cavity barriers should be installed in a continuous run, (with the exception of abutting up to full fill vertical cavity barriers). Where this is not possible, details should be agreed with the projects principal designer and or fire engineer.

Horizontal cavity barriers should be installed adjacent and tightly abutted to any vertical cavity barriers, the vertical cavity barriers should be installed first.

Cavity barriers may be cut to length as required, adjacent lengths must be tightly abutted together. The intumescing face of the cavity barrier should be unrestricted and free to expand in a fire situation, fully filling the cavity.

An identification label is attached to the intumescing face of the cavity barrier, ensure this faces out into the open cavity. Also ensure the label is visible and legible and reads the right way up.

If the identification label is not legible please contact Tenmat, the label is important in terms of identifying the product in the future, for example during fire risk assessments or fire safety inspections.

Cavity barrier fixing brackets, both multi purpose, (MP bracket) or high performance (HP bracket) must not penetrate through the face of the cavity barrier. Screws for direct fixing and fixings to secure brackets are not supplied by Tenmat.

The brackets used to fix the horizontal cavity barrier must be installed with the spike inserted centrally (horizontally) to the rock mineral wool section of the cavity barrier with the bracket fixed above and not below the cavity barrier.

The use of tape is not required over the joints between the lengths of cavity barrier, and if used should not be applied over the face of intumescent material.

The cavity barrier must be installed following the installation methods described below. The cavity barrier must not be penetrated by any other mechanical or electrical services.

Fitting Instructions
VFB 120/120

Fire Barrier Support Details

Cavity Size (mm)	Product Width (mm)	Fitting Option Number	Barrier Support Type	No. of support (brackets) fixings per metre	Maximum (brackets) Centres (mm)	Front Face / Intumescent Fixing	No. of (Face) Fixings per metre	Front Face Fixing Centres (mm)
$40-100$	$15-75$	1	Screw	NA	NA	Screw	4	250
$101-115$	$76-90$	2	MP Bracket	2	500	Pigtail Screws	4	250
$116-240$	$91-215$	3	MP Bracket	2	500	Pigtail Screws	4	250
$241-300$	$216-275$	4	MP Bracket	3	350	Pigtail Screws	4	250
$301-450$	$276-425$	5	HP Bracket	2	500	Pigtail Screws	4	

Option 1

VFB 120/120- Product width across cavity 16 mm up to 75 mm wide, directly faced fixed, no additional pigtails required.

Use stainless steel countersunk head screws, with a maximum head diameter of 11.5 mm and with a length suitable for the size of cavity barrier and sufficient fixing depth into the substrate.

Fixings must have an appropriate fixing depth for the substrate (with a minimum of 50 mm for masonry fixings and minimum 25 mm for timber unless otherwise specified by the fixing manufacturers guidance for their fixing type).

Ensure that the countersunk screw head does not fully penetrate the face of the cavity barrier, the screw head should sit flush or slightly proud.

Care should be taken not to over tighten as this may affect the performance of the intumescent seal.

Position the first screw fixing through the centre line of the face of the cavity barrier at a maximum 125 mm from one end, continue to face fix through at maximum 250 mm centres (4 screws per linear meter), ensuring that the final fixing is a maximum 125 mm from the end of the cavity barrier. This will ensure that face fixings are positioned at 250 mm centres across the continuous run of cavity barrier.

Where sections of cavity barrier are less than 1 linear meter in length, ensure that face fixings are positioned at a maximum 125 mm from each end with additional fixing being positioned at maximum 250 mm centres between the end fixings.

For cut sections of cavity barrier less than or equal to 250 mm in length only one fixing is required.

Option 2

VFB 120/120 - Product width across cavity from 76 mm up to 90 mm wide, fixed using 2 multi purpose (MP) 65mm brackets and 4 number pigtails screws (per linear meter).

MP brackets are supplied with 2 fixing spikes, one spike is 65 mm long (A), the other is 160 mm long (B), with a central pre drilled section for securing the bracket to the substrate.

For cavity barriers 76 mm -90mm wide (across cavity) use 2 MP brackets and the 65 mm (A) long spike.

To secure the bracket use nom. $5 \mathrm{~mm} \emptyset$ stainless steel screws/fixings, with a maximum head diameter of 13 mm and with a length and type suitable for the substrate.

Ensure that the screw head sits as flush as possible with the substrate.
Fix through both of the fixing holes.
Fixings must have an appropriate fixing depth for the substrate (with a minimum of 50 mm for masonry and minimum 25 mm for timber unless otherwise specified by the fixing manufacturers guidance for their fixing type).

Fix 2 number MP brackets, per linear meter, to the substrate at maximum 250 mm from the end of the cavity barrier, with a maximum spacing between brackets of 500 mm .

Where sections of cavity barrier are less than 1 linear meter in length, ensure that MP brackets are positioned at a maximum 250 mm from each end. For cut sections of cavity barrier less than or equal to 500 mm in length only one MP bracket is required.

Push the cavity barrier onto the bracket spike, the brackets should impale the VFB 120/120 to mid barrier depth and must not protrude through the intumescent element.

The cavity barrier should be pushed fully onto the bracket spike and sit flush with the substrate at the rear of the cavity barrier, ensuring that there are no gaps behind the cavity barrier.

Screw the pigtail screws through the face of the intumescing material on the face of the cavity barrier (the face with the label).

Position the first pigtail screw fixing through the face of the cavity barrier at a maximum 125 mm from one end, continue to face fix through at maximum 250 mm centres (4 pigtail screws per linear meter), ensuring that the final pigtail fixing is a maximum 125 mm from the end of the cavity barrier.

This will ensure that pigtail fixings are positioned at 250 mm centres across the continuous run of cavity barrier.

The pigtails should be screwed in to the face of the cavity barrier to a depth which leaves 25 mm of the pigtail proud of the intumescing face of the cavity barrier.

Where sections of cavity barrier are less than 1 linear meter in length, ensure that pigtails are positioned at a maximum 125 mm from each end with additional fixing being positioned at maximum 250 mm centres between the end pigtails.

Where the space between the end pigtails exceeds 250 mm additional pigtails will be required.

Where the cavity barrier is less than 250 mm in length only 1 pigtail will be required.
All sections of cavity barrier require pigtail screws unless directly faced fixed through the cavity barrier, as per option 1.

Option 3

VFB 120/120 - Product width across cavity from 91 mm up to 215 mm wide, fixed using 2 multi purpose (MP) 160 mm brackets and 4 number pigtails screws (per linear meter).

MP brackets are supplied with 2 fixing spikes, one spike is 65 mm long (A), the other is 160 mm long (B), with a central section for securing the bracket to the substrate.

For cavity barriers $91 \mathrm{~mm}-215 \mathrm{~mm}$ wide (across cavity) use 2 MP brackets and the 160 mm (B) long spike. To secure the bracket use nom. $5 \mathrm{~mm} \emptyset$ stainless steel screws/fixings, with a maximum head diameter of 13 mm and with a length and type suitable for the substrate.

Ensure that the screw head sits as flush as possible with the substrate.
Fix through both of the fixing holes.
Fixings must have an appropriate fixing depth for the substrate (with a minimum of 50 mm for masonry and minimum 25 mm for timber unless otherwise specified by the fixing manufacturers guidance for their fixing type).

For cavity barriers $91 \mathrm{~mm}-215 \mathrm{~mm}$ wide (across cavity) use 2 MP brackets and the 160 mm long spike. The 160 mm spike will require cutting to size, if used in barriers less than 185 mm wide, to ensure that the spike does not pierce through the face of the intumescing material, the bracket should be cut to provide a minimum projection through the barrier to $3 / 4$ of the cavity barrier width and to a maximum of 25 mm behind the face of the intumescing strip.

Fix 2 number MP brackets, per linear meter, to the substrate at maximum 250 mm from the end of the cavity barrier, with a maximum spacing between brackets of 500 mm . Where sections of cavity barrier are less than 1 linear meter in length, ensure that MP brackets are positioned at a maximum 250 mm from each end. Where the cavity barrier is less than or equal to 500 mm in length 1 MP bracket may be used.

Push the cavity barrier onto the bracket spike, the brackets should impale the VFB 120/120 to mid barrier depth and must not protrude through the intumescent element.

The cavity barrier should be pushed fully onto the bracket spike and sit flush with the substrate at the rear of the cavity barrier, ensuring that there are no gaps behind the cavity barrier.

Screw the pigtail screws through the face of the intumescing material on the face of the cavity barrier (the face with the labels).

Position the first pigtail screw fixing through the face of the cavity barrier at a maximum 125 mm from one end, continue to face fix through at maximum 250 mm centres (4 pigtail screws per linear meter), ensuring that the final pigtail fixing is a maximum 125 mm from the end of the cavity barrier.

This will ensure that pigtail fixings are positioned at 250 mm centres across the continuous run of cavity barrier.

The pigtails should be screwed in to the face of the cavity barrier to a depth which leaves 25 mm of the pigtail proud of the intumescing face of the cavity barrier.

Where sections of cavity barrier are less than 1 linear meter in length, ensure that pigtails are positioned at a maximum 125 mm from each end with additional fixing being positioned at maximum 250 mm centres between the end pigtails.

Where the space between the end pigtails exceeds 250 mm additional pigtails will be required.

Where the cavity barrier is less than 250 mm in length only 1 pigtail will be required.
All sections of cavity barrier require pigtail screws unless directly faced fixed through the cavity barrier, as per option 1.

Option 4

VFB 120/120 - Product width across cavity from 216 mm up to 275 mm wide, fixed using 3 multi purpose (MP) 160mm brackets and 4 number pigtails screws (per linear meter).

MP brackets are supplied with 2 fixing spikes, one spike is 65 mm long, the other is 160 mm long, with a central section for securing the bracket to the substrate.

For cavity barriers $216 \mathrm{~mm}-275 \mathrm{~mm}$ wide (across cavity) use 3 MP brackets and the 160 mm (B) long spike. To secure the bracket use nom. $5 \mathrm{~mm} \varnothing$ stainless steel screws/fixings, with a maximum head diameter of 13 mm and with a length and type suitable for the substrate.

Ensure that the screw head sits as flush as possible with the substrate.
Fix through both of the fixing holes.
Fixings must have an appropriate fixing depth for the substrate (with a minimum of 50 mm for masonry and minimum 25 mm for timber unless otherwise specified by the fixing manufacturers guidance for their fixing type).

Fix 3 number MP brackets, per linear meter, to the substrate at maximum 150 mm from the end of the cavity barrier, with a maximum spacing between brackets of 350 mm .

Where sections of cavity barrier are less than 1 linear meter in length, ensure that MP brackets are positioned at a maximum 150 mm from each end.

Where the cavity barrier is less than or equal to 350 mm in length 1 MP bracket may be used.
Push the cavity barrier onto the bracket spike, the brackets should impale the VFB 120/120 to approximately mid barrier depth and must not protrude through the intumescent element.

The cavity barrier should be pushed fully onto the bracket spike and sit flush with the substrate, at the rear of the cavity barrier, ensuring that there are no gaps behind the cavity barrier.

Screw the pigtail screws through the face of the intumescing material on the face of the cavity barrier (the face with the labels).

Position the first pigtail screw fixing through the face of the cavity barrier at a maximum 125 mm from one end, continue to face fix through at maximum 250 mm centres (4 pigtail screws per linear meter), ensuring that the final pigtail fixing is a maximum 125 mm from the end of the cavity barrier.

This will ensure that pigtail fixings are positioned at 250 mm centres across the continuous run of cavity barrier.

The pigtails should be screwed in to the face of the cavity barrier to a depth which leaves 25 mm of the pigtail proud of the intumescing face of the cavity barrier.

Where sections of cavity barrier are less than 1 linear meter in length, ensure that pigtails are positioned at a maximum 125 mm from each end with additional fixing being positioned at maximum 250 mm centres between the end pigtails.

Where the space between the end pigtails exceeds 250 mm additional pigtails will be required.
Where the cavity barrier is less than 250 mm in length only 1 pigtail will be required.
All sections of cavity barrier require pigtail screws unless directly faced fixed through the cavity barrier, as per option 1.

Option 5

\qquad

VFB 120/120-Product width across cavity from $276 \mathrm{~mm}-425 \mathrm{~mm}$ wide, fixed using 2 high performance (HP) 328mm brackets and 4 number pigtails screws (per linear meter).

HP brackets are supplied with a single fixing spike, at 328 mm long with two pre drilled fixing holes and a 90° return angle for securing the bracket to the substrate.

The 328 mm spike will require cutting to size, if used in barriers less than 350 mm wide, to ensure that the spike does not pierce through the face of the intumescing material.

The bracket should be cut to provide a minimum projection through the barrier to $3 / 4$ of the cavity barrier width and to a maximum of 25 mm behind the face of the intumescing strip.

To secure the bracket use nom. $5 \mathrm{~mm} \varnothing$ stainless steel screws/fixings, with a maximum head diameter of 13 mm and with a length and type suitable for the substrate.

Ensure that the screw head sits as flush as possible with the substrate.
Fix through both of the fixing holes.
Fixings must have an appropriate fixing depth for the substrate (with a minimum of 50 mm for masonry and minimum 25 mm for timber unless otherwise specified by the fixing manufacturers guidance for their fixing type).

Fix 2 number HP brackets, per linear meter, to the substrate at maximum 250 mm from the end of the cavity barrier, with a maximum spacing between brackets of 500 mm .

Where sections of cavity barrier are less than 1 linear meter in length, ensure that MP brackets are positioned at a maximum 250 mm from each end. Where the cavity barrier is less than or equal to 500 mm in length 1 HP bracket may be used.

Push the cavity barrier onto the bracket spike, the brackets should impale the VFB 120/120 to approximately mid barrier depth and must not protrude through the intumescent element. The cavity barrier should be pushed fully onto the bracket spike and sit flush with the substrate, at the rear of the cavity barrier, ensuring that there are no gaps behind the cavity barrier.

Screw the pigtail screws through the face of the intumescing material on the face of the cavity barrier (the face with the labels).

Position the first pigtail screw fixing through the face of the cavity barrier at a maximum 125 mm from one end, continue to face fix through at maximum 250 mm centres (4 pigtail screws per linear meter), ensuring that the final pigtail fixing is a maximum 125 mm from the end of the cavity barrier.

This will ensure that pigtail fixings are positioned at 250 mm centres across the continuous run of cavity barrier.

The pigtails should be screwed in to the face of the cavity barrier to a depth which leaves 25 mm of the pigtail proud of the intumescing face of the cavity barrier.

Where sections of cavity barrier are less than 1 linear meter in length, ensure that pigtails are positioned at a maximum 125 mm from each end with additional fixing being positioned at maximum 250 mm centres between the end pigtails.

Where the space between the end pigtails exceeds 250 mm additional pigtails will be required.
Where the cavity barrier is less than 250 mm in length only 1 pigtail will be required.
All sections of cavity barrier require pigtail screws unless directly faced fixed through the cavity barrier, as per option 1.

Notes

VFB 120/120

Tenmat Ltd
Ashburton Rd West, Manchester M17 1TD United Kingdom
+44 1618722181
fpsales@tenmat.com
tenmat.com

Tenmat

Part of the
Diamorph Group

Advanced materials.

tenmat.com

Tenmat warrants the materials it produces will conform to Tenmat specifications and approved drawings where applicable. It is entirely the customer's responsibility to make the final product choice and satisfy themselves of the suitability of the product for the intended application, carrying out testing where required. For construction projects, all products which the customer is intending to use on a particular project must be approved in writing by the customer's building designer, system designer or design control professional, to ensure compliance with the latest regulations.

The information contained in Tenmat data sheets is presented in good faith. Tenmat Limited makes passive fire protection product suggestions based solely upon and limited to the information made available to Tenmat. Tenmat possesses knowledge of fire test data and offers manufacturers installation advice. Within reason, Tenmat is skilled at offering opinion concerning the installations in question, and can comment on interfaces with other construction materials, but this is not a recommendation or decision. Decisions on overall building fire strategy are not made by Tenmat. Tenmat products have been tested for a wide range of construction types, and they must be only used in accordance with Tenmat test evidence. Each specific Tenmat product must be installed into a construction that matches the corresponding test report. Tenmat product performance requires safe and proper handling and correct installation.

